CST207 DESIGN AND ANALYSIS OF ALGORITHMS

Lecture 6: Dynamic Programming

Lecturer: Dr. Yang Lu Email: luyang@xmu.edu.my Office: A1-432 Office hour: 2pm-4pm Mon & Thur

Recall Calculation of the nth Fibonacci Term

- The time complexity of this algorithm is Θ(2ⁿ).
- A lot of time is wasted on *recomputing* the same term.

Image source: Figure 1.2, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Recall Calculation of the nth Fibonacci Term

- A straightforward solution: store the values in an array to avoid recomputing.
- The time complexity reduces from Θ(2ⁿ) to Θ(n).

Image source: Figure 1.2, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Dynamic Programming

- Dynamic programming is similar to divide-and-cnoquer.
 - An instance of a problem is divided into smaller instances.
- However, the difference is:
 - Divide-and-cnoquer is a top-down approach.
 - Dynamic programming is a bottom-up approach.
- The steps in the development of a dynamic programming algorithm are:
 - Establish a *recursive property* that gives the solution to an instance of the problem.
 - Solve an instance of the problem in a *bottom-up* fashion by solving smaller instances first.

Outline

We discuss dynamic programming with six problems:

- The binomial coefficient
- Chained matrix multiplication
- Optimal binary search trees
- Knapsack problem
- Floyd's algorithm for shortest paths
- Sequence alignment

4

THE BINOMIAL COEFFICIENT

5

The Binomial Coefficient

The binomial coefficient is calculated by:

$$\binom{n}{k} = \frac{n!}{k! (n-k)!} \quad \text{for } 0 \le k \le n.$$

 We cannot compute the binomial coefficient directly by the definition because n! is very large even for moderate values of n.

The Binomial Coefficient

By representing binomial coefficients as the Pascal's traiangle, we can establish the recursive property:

$$\binom{n}{k} = \begin{cases} \binom{n-1}{k-1} + \binom{n-1}{k} & 0 < k < n \\ 1 & k = 0 \text{ or } k = n. \end{cases}$$

- Each entry is the sum of the two above.
- The computation of n! and k! is eliminated.

The Pascal's triangle

7

The Binomial Coefficient Solved By Recursion

- Like the recursive version of the nth Fibonacci term calculation algorithm, using recursion to calculate binomial coefficient is very inefficient.
- A great number of terms are recomputed.
 - bin_coef_recursion(n-1,k-1) and bin_coef_recursion(n-1,k) both need the result of bin_coef_recursion(n-2,k-1).
- The divide-and-conquer approach is always inefficient when an instance is divided into two smaller instances that are almost as large as the original instance.

```
int bin_coef_recursive (int n, int k)
{
    if (k == 0 || n == k)
        return 1;
    else
        return bin_coef_recursive(n - 1, k - 1) + bin_coef_recursive(n - 1, k);
}
```


The Binomial Coefficient Solved By Dynamic Programming

- Store the computation result of $\binom{i}{j}$ in B[i][j] with an array B.
- Recomputing can be avoided by directly indexing the array.
- The steps for constructing a dynamic programming algorithm for this problem:
 - Establish a recursive property:

$$B[i][j] = \begin{cases} B[i-1][j-1] + B[i-1][j] & 0 < j < i \\ 1 & j = 0 \text{ or } j = i. \end{cases}$$

- Solve an instance of the problem in a *bottom-up* fashion by computing from the first row of *B*.
- The optimal solution is B[n][k].

The Binomial Coefficient Solved By Dynamic Programming

- We only need to calculate up to the kth column for each row.
- Actually, the calculation only needs the previous row. Therefore, all the rows before the previous row can be discarded.
 - The algorithm can be further improved by just using a single 1-d array.

The Binomial Coefficient Solved By Dynamic Programming

Every-case time complexity of this algorithm is determined by: $1+2+3+4+\dots+k+(k+1)+(k+1)+\dots+(k+1)$. n-k+1 times

$$n$$

 $B[n][k]$
Shape of the array

Ŀ

$$\frac{k(k+1)}{2} + (n-k+1)(k+1) = \frac{(2n-k+2)(k+1)}{2} \in \Theta(nk).$$

CHAINED MATRIX MULTIPLICATION

- To multiply an i×j matrix with a j×k matrix using the standard method, it is necessary to do i×j×k elementary multiplications.
- Consider the chained matrix multiplication:

 $\begin{array}{ccccccccc} A & \times & B & \times & C & \times & D \\ 20 \times 2 & 2 \times 30 & 30 \times 12 & 12 \times 8 \end{array}$

• The total number of elementary multiplications depends on the multiplication order.

- Our goal is to develop an algorithm that determines the optimal order for multiplying n matrices.
 - The input of the algorithm is the dimensions of these matrices.
- Let d_0 be the number of rows in A_1 and d_k be the number of columns in A_k for $1 \le k \le n$, the dimension of A_k is $d_{k-1} \times d_k$.
 - We have n + 1 dimensions for multiplying n matrices.
- We can decompose the matrices, such that the optimal solution with n matrices can be constructed in *bottom-up* fashion.
- Then, we can define for 1 ≤ i ≤ j ≤ n, M[i][j] is the minimum number of multiplications needed to multiply A_i through A_j, if i < j, and M[i][i] = 0.</p>
- The optimal solution is M[1][n].

- Assume we have six matrices, the optimal order must have one of the following factorizations:
 - $\bullet A_1(A_2A_3A_4A_5A_6)$
 - $(A_1A_2)(A_3A_4A_5A_6)$
 - $(A_1A_2A_3)(A_4A_5A_6)$
 - $(A_1A_2A_3A_4)(A_5A_6)$
 - $\bullet \quad (A_1 A_2 A_3 A_4 A_5) A_6$
- Generally, the optimal order must be with some k, for $1 \le k \le n 1$:

 $(A_1 \dots A_k)(A_{k+1}A_n)$

- We can obtain the following recursive property for $1 \le i \le j \le n$: $M[i][j] = \min_{i \le k \le j-1} (M[i][k] + M[k+1][j] + d_{i-1}d_kd_j), \quad \text{if } i < j.$ M[i][i] = 0.
- Different from the binomial coefficient problem that each term is calculated by the top left and top terms, M[i][j] needs the term on its left and its bottom.

	j = 1	<i>j</i> = 2	<i>j</i> = 3	<i>j</i> = 4	<i>j</i> = 5	<i>j</i> = 6
i = 1	<i>M</i> [1][1]	<i>M</i> [1][2]	<i>M</i> [1][3]	<i>M</i> [1][4]	<i>M</i> [1][5]	M[1][6]
<i>i</i> = 2		M[2][2]	M[2][3]	<i>M</i> [2][4]	<i>M</i> [2][5]	M[2][6]
i = 3			M[3][3]	<i>M</i> [3][4]	<i>M</i> [3][5]	M[3][6]
<i>i</i> = 4				<i>M</i> [4][4]	<i>M</i> [4][5]	<i>M</i> [4][6]
<i>i</i> = 5					M[5][5]	M[5][6]
<i>i</i> = 6						<i>M</i> [6][6]

	<i>j</i> = 1	<i>j</i> = 2	<i>j</i> = 3	<i>j</i> = 4	<i>j</i> = 5	<i>j</i> = 6	
<i>i</i> = 1	M[1][1]	M[1][2]	M[1][3]	M[1][4]	M[1][5]	M[1][6]	Diagnal 5
<i>i</i> = 2		M[2][2]	M[2][3]	M[2][4]	M[2][5]	M[2][6]	Diagnal 4
<i>i</i> = 3			M[3][3]	M[3][4]	M[3][5]	M[3][6]	Diagnal 3
<i>i</i> = 4				M[4][4]	M[4][5]	M[4][6]	Diagnal 2
i = 5					M[5][5]	M[5][6]	Diagnal 1
<i>i</i> = 6						M[6][6]	Diagnal 0

18

/

Pseudocode of Chained Matrix Multiplication

- Except the loop over *diagonal* and the loop over *i*, find the minimum value is also a loop over *k*.
- For given values of *diagonal* and *i*, for *i* ≤ *k* ≤ *j* − 1, the number of passes through *k* is

j-1-i+1 = i + diagonal - 1 - i + 1 = diagonal

- The number of passes through i is n diagonal.
- The number of passes through diagonal is n 1.
- Totally, the every-case time complexity is:

 $\sum_{diagonal=1}^{n-1} (n - diagonal) \times diagonal \in \Theta(n^3).$

Determine the Optimal Order

1

2

3

4

5

• The optimal order is determined by recursively examining the array *P*.

Optimal order: $A_1((((A_2A_3)A_4)A_5)A_6))$

void order (index i, index j) if (i == j)cout << "A" << i; else{ k = P[i][j];cout << "("; order(i, k); order(k + 1, j); cout << ")";

OPTIMAL BINARY SEARCH TREES

21

Optimal Binary Search Trees

- A binary search tree is a binary tree of keys that come from an ordered set, such that
 - Each node contains one key.
 - The keys in the left subtree of a given node are less than or equal to the key in that node.
 - The keys in the right subtree of a given node are greater than or equal to the key in that node.

Image source: Figure 3.10, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Optimal Binary Search Trees

- The number of comparisons done by search to locate a key is called the *search time*.
- We want to know the average search time of a binary search tree while the keys do not have the same probability.
 - E.g. Tom is a common name is the United States. It has higher probability to be a search key.
 - Thus, put the node whose key has high probability to lower depth will decrease the average search time.

Image source: Figure 3.10, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Optimal Binary Search Trees

- An *optimal binary search tree* minimizes the average time it takes to locate a key.
- Assume the search key is always in the tree. Let Key₁, Key₂, ..., Key_n be the n keys in order, and let p_i be the probability that Key_i is the search key.
 - The actual values of the keys are not important.
- The search time c_i for a given key is

$$c_i = depth(Key_i) + 1,$$

- Recall that depth(root) = 0.
- The average search time we want to minimize is

Example

- This figure shows the five different trees when n = 3.
- The probabilities are:

$$p_1 = 0.7$$
 $p_2 = 0.2$ $p_3 = 0.1$

- The average search times are:
 - 1. 3 (0.7) + 2 (0.2) + 1 (0.1) = 2.6
 - 2. 2 (0.7) + 3 (0.2) + 1 (0.1) = 2.1
 - 3. 2 (0.7) + 1 (0.2) + 2 (0.1) = 1.8
 - 4. 1 (0.7) + 3 (0.2) + 2 (0.1) = 1.5
 - 5. 1 (0.7) + 2 (0.2) + 3 (0.1) = 1.4
- Tree 5 is optimal.

Optimal Binary Search Trees by Dynamic Programming

- As usual, enumerating and calculating all cases is impossible, which is again exponential.
- We can decompose the tree with subtrees, such that the optimal binary search tree can be constructed in *bottom-up* fashion.
- We use A[i][j] to represent the optimal search time of the binary search tree constructed from Key_i to Key_j.
- The optimal solution is A(1, n).
- For $1 \le k \le n$, there must exist an optimal binary search tree whose root has Key_k .
 - Its subtrees must also be optimal.

Image source: Figure 3.13, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Optimal Binary Search Trees by Dynamic Programming

- Because the subtrees have one more depth, we should add the probabilities of all their keys.
- The average time in left subtree is:

 $A[1][k-1] + p_1 + \dots + p_{k-1}$

- The average time in right subtree is: $A[k+1][n] + p_{k+1} + \dots + p_n$
- The average time searching for root: p_k
- Totally:

$$A[1][k-1] + A[k+1][n] + \sum_{m=1}^{n} p_m$$

For each key, there is one

additional comparison at

the root.

Image source: Figure 3.13, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Optimal Binary Search Trees by Dynamic Programming

• We can derive the following recursive property:

$$A[i][j] = \min_{i \le k \le j} (A[i][k-1] + A[k+1][j]) + \sum_{m=i}^{J} p_m \quad \text{for } i < j$$

$$A[i][i] = p_i$$

$$A[i][i-1] \text{ and } A[j+1][j] \text{ are defined to be 0.}$$

- The bottom-up strategy for solving this recursive property is similar to the chained matrix multiplication problem.
 - Use the diagonal trick.

Pseudocode of Optimal Binary Search Trees

• The every-case time complexity is $\Theta(n^3)$.

			index P[][])
		{	<pre>index i, j, k, diagonal; float A[1n+1][0n];</pre>
<pre>struct nodetype { keytype key; nodetype* left; nodetype* right;</pre>	<pre>node_pointer construct_opt_search_tree (index i, j) { index k; node_pointer p; k = P[i][j]; if (k == 0) return NULL; else{ p = new nodetype; p -> key = Key[k]; p -> left = construct_opt_search_tree(i, k - 1); n -> right = construct_opt_search_tree(k + 1, i); </pre>		<pre>for (i = 1; i <= n; i++){ A[i][i - 1] = 0; A[i][i] = p[i]; P[i][i] = i; P[i][i - 1] = 0; } A[n + 1][n] = 0; for (diagonal = 1; diagonal <= n - 1; diagonal++) for (i = 1; i <= n - diagonal; i++){ j = i + diagonal; A[i][j] = min(A[i][k - 1] + A[k + 1][j]) + sum(p[ij]); P[i][i] = the value of k that gives the minimum; </pre>
};	return p;		}
<pre>typedef nodetype* node_pointer;</pre>	}	}	<pre>minavg = A[1][n];</pre>

void opt_search_tree (int n,

const float p[], float& minavg,

KNAPSACK PROBLEM

Knapsack Problem

- Problem description:
 - Given n items and a "knapsack."
 - Item *i* has weight $w_i > 0$ and has value $v_i > 0$.
 - Knapsack has capacity of *W*.
 - Goal: Fill knapsack so as to maximize total value.
- Mathematical description:
 - Given two *n*-tuples of positive numbers < v₁, v₂, ..., v_n > and < w₁, w₂, ..., w_n >, and W > 0, we wish to determine the subset T ⊆ {1,2, ..., n} that

maximize
$$\sum_{i \in T} v_i$$
 subject to $\sum_{i \in T} w_i \le W$

Example

- Weight capacity W = 5kg.
- The possible ways to fill the knapsack:
 - {1, 2, 3} has value \$37 with weight 4kg.
 - {3, 4} has value \$35 with weight 5kg.
 - {1, 2, 4} has value \$42 with weight 5kg. (optimal)

i	v_i	Wi
1	\$10	1kg
2	\$12	1kg
3	\$15	2kg
4	\$20	3kg

Knapsack Problem by Dynamic Programming

- We can decompose the item set and the maximum weight, such that the optimal solution with n items and W capcity can be constructed in *bottom-up* fashion.
- We define V(i, j) as the optimal solution of items subset {1, ..., i} with capacity j.
- The optimal solution is V(n, W).
- There are two cases for V(i, j):
 - V(i, j) does not include item i, because of out of capacity or not worthy.
 - V(i,j) = V(i-1,j).
 - V(i,j) includes item i.
 - $V(i,j) = V(i-1,j-w_i) + v_i$.

Knapsack Problem by Dynamic Programming

• We can establish the recursive property:

$$V(i,j) = \begin{cases} V(i-1,j) & \text{if } j - w_i < 0\\ \max(V(i-1,j), V(i-1,j-w_i) + v_i) & \text{if } j - w_i \ge 0\\ V(0,j) = 0 & \text{for } j \ge 0\\ V(i,0) = 0 & \text{for } i \ge 0 \end{cases}$$

• The bottom-up construction is easy, just loop over *i* and *j* for calculating array *V*.

Example

 $V(1,1) = \max(V(0,1), V(1,1-w_1) + v_1)$ V(0,1) = 0V(1,0) + 10 = 10 $V(2,2) = \max(V(1,2), V(1,2 - w_2) + v_2)$ V(1,2) = 10 V(1,1) + 12 = 22

 $V(3,2) = \max(V(2,2), V(2,2-w_3) + 15)$ V(2,2) = 22

V(2,0) = 0 XIAMEN UNIVERSITY MALAYSIA 厦門大學 馬來西亞分校

i	v_i	w _i
1	\$10	1kg
2	\$12	1kg
3	\$15	2kg
4	\$20	3kg

outer Science Department of Xiamen University

FLOYD'S ALGORITHM FOR SHORTEST PATHS

The Shortest Path Problem

- A common problem encounted by air travelers is the determination of the shortest way to fly from one city to another without a direct fight.
- We represent this kind of problem by using a graph.

Image source: Figure 3.2, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Review of Graph Theory

- In graph theory, the *edges* are linked between *vertices*.
- If each edge has a direction, the graph is called a directed graph.
- If the edges have values associated with them, the values are called *weights* and the graph is called a *weighted graph*.
 - Weights are usually assumed to be nonnegative.
 - In many applications weights are used to represent distances.

Image source: Figure 3.2, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Review of Graph Theory

- In a directed graph, a *path* is a sequence of vertices such that there is an edge from each vertex to its successor.
 - In the figure, [v₁, v₄, v₃] is a path and [v₃, v₄, v₁] is not a path.
- A path is called *simple* if it never passes through the same vertex twice.
- The *length* of a path in a weighted graph is the sum of the weights on the path.

Image source: Figure 3.2, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

The Shortest Path Problem

- A shortest path must be a simple path.
- There are three simple paths from v₁ to v₃, and their lengths are:

 $length[v_1, v_2, v_3] = 1 + 3 = 4$ $length[v_1, v_4, v_3] = 1 + 2 = 3$ $length[v_1, v_2, v_4, v_3] = 1 + 2 + 2 = 5.$

Obviously, [v₁, v₄, v₃] is the shortest path from v₁ to v₃.

The Shortest Path Problem

- An obvious algorithm would be to determine all the paths from the starting vertex to the ending vertex, and select the ones with the minimum length.
- Suppose all vertices are connected
 - The second vertex in the path can be any of the n 1 vertices.
 - The third vertex in the path can be any of the n-2 vertices.
 - • •
- The total number of paths:

$$(n-1)(n-2) \dots 1 = (n-1)!,$$

which has factorial complexity.

• We create an array *W* called *adjacency matrix* to represent the graph.

 $W[i][j] = \begin{cases} \text{weight on edge} & \text{if there is an edge from } v_i \text{ to } v_j \\ \infty & \text{if there is no edge from } v_i \text{ to } v_j \\ 0 & \text{if } i = j. \end{cases}$

Image source: Figure 3.3, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

- We can decompose the vertices, such that the optimal solution with n vertices can be constructed in *bottom-up* fashion with its subsets.
- We create an array D that contains the lengths of the shortest paths in the graph.
 - D[i][j] is the shortest path from v_i to v_j .
- To calculate D, we create a sequence of n + 1 arrays $D^{(k)}$, where $0 \le k \le n$.
 - $D^{(k)}[i][j]$ is the length of a shortest path from v_i to v_j using only vertices in the set $\{v_1, v_2, \dots, v_k\}$ as intermediate vertices.
- Thus, we have $D^{(0)} = W$ and $D^{(n)} = D$.

	1	2	3	4	5
1	0	1	3	1	4
2	8	0	3	2	5
3	10	11	0	4	7
4	6	7	2	0	3
5	3	4	6	4	0
			D		

- Therefore, to determine D from W we need only find a way to obtain $D^{(n)}$ from $D^{(0)}$.
- The steps for using dynamic programming:
 - Establish a recursive property with which we can compute $D^{(k)}$ from $D^{(k-1)}$.
 - Solve an instance of the problem in a bottom-up fashion by repeating the process for k = 1 to n. This creates the sequence $D^{(0)}$, $D^{(1)}$, $D^{(2)}$, ..., $D^{(n)}$.

- We accomlish Step 1 by considering the shortest path, using only vertices in {v₁, v₂, ..., v_k} as intermediate vertices with two cases:
 - Case 1. It does not use v_k . Then

 $D^{(k)}[i][j] = D^{(k-1)}[i][j].$

• Case 2. It uses v_k . Then

 $D^{(k)}[i][j] = D^{(k-1)}[i][k] + D^{(k-1)}[k][j]$

- Because we calculate $D^{(k)}$ in bottom-up fashion, we know all the values in $D^{(k-1)}$.
- Thus, $D^{(k)}$ could be determined by $D^{(k)}[i][j] = \min(D^{(k-1)}[i][j], D^{(k-1)}[i][k] + D^{(k-1)}[k][j]).$ Case 1
- After D is calculated, we have actually calculated the shortest path from v_i to v_j for any i and j.

5

- $D^{(5)}[5][4] = \min(D^{(4)}[5][4], D^{(4)}[5][5] + D^{(4)}[5][4]) = \cdots$
- $D^{(4)}[5][4] = \min(D^{(3)}[5][4], D^{(3)}[5][2] + D^{(3)}[4][4]) = \cdots$
- $D^{(3)}[5][4] = \min(D^{(2)}[5][4], D^{(2)}[5][3] + D^{(2)}[3][4]) = \cdots$
- $D^{(1)}[2][4] = \min D^{(0)}[2][4], D^{(0)}[2][1] + D^{(0)}[1][4] = \min(2,9+1) = 2.$
- $D^{(1)}[5][2] = \min D^{(0)}[5][2], D^{(0)}[5][1] + D^{(0)}[1][2] = \min(\infty, 3 + 1) = 4.$

W

Example

We calculate D[5][4] as an example.

• $D^{(0)}[5][4] = W[5][4] = \infty$.

Pseudocode of Floyd's Algorithm

- The every-case time complexity is obviously $\Theta(n^3)$.
- We can use an array P to record the index of intermediate vertex.
 - If at least one intermediate vertex exists, P[i][j] is the highest index of an intermediate vertex on the shortest path from v_i to v_j; otherwise P[i][j] is 0.

path(5,3) calls path(5,4)	
and path(4,3).	
path(5,4) calls path(5,1)	
and path(1,4).	
Output: v5 v1 v4 v3	

AMEN UNIVERSITY MALAYSIA

夏門大學 馬來西亞分校

void path (index q, r)
{
 if (P[q][r] != 0){
 path(q, P[q][r]);
 cout << "v" << P[q][r];
 path(P[q][r], r);
 }
}</pre>

Image source: Figure 3.5, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Dynamic Programming and Optimization Problems

- For an optimization problem like the shortest path problem, it has an optimal solution (e.g. path) with an optimal value (e.g. length).
- The steps of developing a dynamic programming algorithm for an opimization problem can be generalized as:
 - Establish a recursive property that gives the optimal solution to an instance of the problem/
 - Compute the value of an optimal solution in a bottom-up fashion.
 - Construct an optimal solution in a bottom-up fashion.

Definition

The principle of optimality is said to apply in a problem if an optimal solution to an instance of a problem always contains optimal solution to all subinstances.

Example

- We show the following example shows that dynamic programming does not apply in every optimization problem.
- Consider the longest path problem with single path.
- The optimal longest simple path from v_1 to v_4 is $[v_1, v_3, v_2, v_4]$.
- However, the subpath $[v_1, v_3]$ is not an optimal longest path from v_1 to v_3 because

 $length[v_1, v_3] = 1$ and $length[v_1, v_2, v_3] = 4$.

• The reason is that the optimal path from v_1 to v_3 ([v_1 , v_2 , v_3]) and from v_3 to v_4 ([v_3 , v_2 , v_4]) cannot be put together to construct a simple path.

SEQUENCE ALIGNMENT

Sequence Alignment

- Sequence alignment finds the optimal way to align two sequences.
- Use DNA sequence as an example:

```
AACAGTTACC
TAAGGTCA
```

The following shows two possible alignments:

_	C C	AAC	CAGTTA	C C
TAA_ <mark>G</mark> GT	C A	TA_	AGGT_	C A

- There are two possible way to make alignments:
 - Insert a gap as represented by "_".
 - Find a mismatch.

Cost of Sequence Alignment

The cost of these two alignments are different:

_AACAGTTACC AACAGTTACC TAA_GGT_CA TA_AGGT_CA

- By assignment the gap with cost 2 and mismatch with cost 1,
 - The left one has a cost of 10.
 - The right one has a cost of 7.
- The optimal sequence alignment is with the minimum cost.

- Use x[0 ... m] and y[0 ... n] to represent the two sequences.
- We can decompose each sequence, such that the optimal solution for sequences with length m and n can be constructed in *bottom-up* fashion.
- Let opt(i, j) be the cost of the optimal alignment of the subsequences x[i ... m] and y[j ... n].
- The optimal alignment is opt(0,0).
- Now, how can we build the recursive property?

The optimal alignment must start with one of the three cases:

- x[0] is aligned with y[0]. x[0] = y[0] has no cost and $x[0] \neq y[0]$ has cost 1.
 - The optimal cost is opt(1,1) + cost.
- x[0] is aligned with a gap and the cost is 2.
 - The optimal cost is opt(1,0) + 2.
- y[0] is aligned with a gap and the cost is 2.
 - The optimal cost is opt(0,1) + 2.

ATC

Thus, we can establish the recursive property:

opt(i,j) = min(opt(i + 1, j + 1) + cost, opt(i + 1, j) + 2, opt(i, j + 1) + 2)

- Different from the previous examples where the optimal solution is at the end of the array.
 - opt(0,0) is the optimal solution.
- We should determine the terminal condition:
 - If we have passed the end of sequence x, that is when i = m, we should insert n j gaps to make alignment.
 - opt(m,j) = 2(n-j). ATC____ATCGTC
 - If we have passed the end of sequence y, that is when j = n, we should insert m i gaps to make alignment.
 - opt(i,n) = 2(m-i).

• Again, we use the diagonal trick for the recursive property:

opt(i,j) = min(opt(i + 1, j + 1) + cost, opt(i + 1, j) + 2, opt(i, j + 1) + 2)

-	j	0	1	2	3	4	5	6	7	8
i		Т	A A A G	A	G	G	Т	С	А	
O	AGTT	7 ACA	8	10 AGG		13	15	16	18	20
1	A		6	8	AGGT	CA ¹¹	13	14	16	18
2	c	6	ACA 5 AGTTA	6	8 AGGT	9	11	12	14	16
3	Α	7	5 AGTT		6	7	9	11	12	14
4	G	9	7	5 5	4	5	7	9	10	12
5	Т	8	8	6		4	_CA 5	7	8	10
6	Т	9	8	7	5	3	3	5	6	8
7	Α	11	9	7	6	4	2	3	4	6
8	С	13	11	9	7	5	3		3	4
9	С	14	12	10	8	6	4	2	1	2
10	÷.	16	14	12	10	8	6	4	2	0

Image source: Figure 3.20, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Conclusion

For an optimization problem, to determine the decomposition and the representation of array is the most difficult part for designing a dynamic programming algorithm.

- The binomial coefficient: calculate B[n][k] from B[i][j].
- The chained matrix multiplication: calculate M[1][n] from M[i][j].
- Optimal binary search tree: calculate A[1][n] by A[i][j].
- The knapsack problem: calculate V(n, W) by V(i, j).
- The shortest path problem: calculate D[i][j] from $D^{(k)}[i][j]$.
- Sequence alignment: calculate opt(0,0) by opt(i,j).

Conclusion

After this lecture, you should know:

- The difference between divide-and-conquer and dynamic programming.
- Why is dynamic programming efficient.
- The condition to use dynamic programming.
- The steps of designing a dynamic programming algorithm.

Thank you!

- Any question?
- Don't hesitate to send email to me for asking questions and discussion. ③

Acknowledgement: Thankfully acknowledge slide contents shared by Prof. Xuemin Hong

